Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Oncol ; 40(7): 207, 2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37330997

RESUMO

Microbes have an immense metabolic capability and can adapt to a wide variety of environments; as a result, they share complicated relationships with cancer. The goal of microbial-based cancer therapy is to treat patients with cancers that are not easily treatable, by using tumor-specific infectious microorganisms. Nevertheless, a number of difficulties have been encountered as a result of the harmful effects of chemotherapy, radiotherapy, and alternative cancer therapies, such as the toxicity to non-cancerous cells, the inability of medicines to penetrate deep tumor tissue, and the ongoing problem of rising drug resistance in tumor cells. Due to these difficulties, there is now a larger need for designing alternative strategies that are more effective and selective when targeting tumor cells. The fight against cancer has advanced significantly owing to cancer immunotherapy. The researchers have greatly benefited from their understanding of tumor-invading immune cells as well as the immune responses that are specifically targeted against cancer. Application of bacterial and viral cancer therapeutics offers promising potential to be employed as cancer treatments among immunotherapies. As a novel therapeutic strategy, microbial targeting of tumors has been created to address the persisting hurdles of cancer treatment. This review outlines the mechanisms by which both bacteria and viruses target and inhibit the proliferation of tumor cells. Their ongoing clinical trials and possible modifications that can be made in the future have also been addressed in the following sections. These microbial-based cancer medicines have the ability to suppress cancer that builds up and multiplies in the tumor microenvironment and triggers antitumor immune responses, in contrast to other cancer medications.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
2.
Int J Biol Macromol ; 230: 123161, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610574

RESUMO

Cancer is a complicated, adaptable, and heterogeneous disease caused by a wide variety of genetic changes that might impair ability of cells to function normally. The majority of the tumors can only be shrunk using conventional oncology therapies like chemotherapy, radiation, and surgical resection, and the tumor often recurs. The inability of conventional cancer therapies to completely destroy the Cancer Stem Cells (CSCs) that otherwise lead to therapy resistance is thus addressed by therapeutic approaches that concentrate on targeting CSCs and their micro-environmental niche. In this review, we summarize approaches that are used for the development of fusion proteins and their therapeutic applications for treating cancer. The main purpose of making advancements towards the fusion technology instead of using conventional treatment methods is to achieve a prolonged half-life of the therapeutic drugs. The fusion of drugs to the immune response enhancing cytokines or the fusion of antibody and cytokines not only increases half-life but also increase the stability of the anti-tumor drug. Several molecules including different fragments of antibodies, cytokines, Human Serum Albumin, transferrin, XTEN polymers, Elastin-like polypeptides (ELPs) can be employed as a fusion partner and the resulting fusion proteins are reported to show enhanced anti-tumor response.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Peptídeos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Polímeros/química , Neoplasias/tratamento farmacológico , Tecnologia , Citocinas
3.
Bioprocess Biosyst Eng ; 46(8): 1077-1097, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36331626

RESUMO

The worldwide fossil fuel reserves are rapidly and continually being depleted as a result of the rapid increase in global population and rising energy sector needs. Fossil fuels should not be used carelessly since they produce greenhouse gases, air pollution, and global warming, which leads to ecological imbalance and health risks. The study aims to discuss the alternative renewable energy source that is necessary to meet the needs of the global energy industry in the future. Both microalgae and macroalgae have great potential for several industrial applications. Algae-based biofuels can surmount the inadequacies presented by conventional fuels, thereby reducing the 'food versus fuel' debate. Cultivation of algae can be performed in all three systems; closed, open, and hybrid frameworks from which algal biomass is harvested, treated and converted into the desired biofuels. Among these, closed photobioreactors are considered the most efficient system for the cultivation of algae. Different types of closed systems can be employed for the cultivation of algae such as stirred tank photobioreactor, flat panel photobioreactor, vertical column photobioreactor, bubble column photobioreactor, and horizontal tubular photobioreactor. The type of cultivation system along with various factors, such as light, temperature, nutrients, carbon dioxide, and pH affect the yield of algal biomass and hence the biofuel production. Algae-based biofuels present numerous benefits in terms of economic growth. Developing a biofuel industry based on algal cultivation can provide us with a lot of socio-economic advantages contributing to a publicly maintainable result. This article outlines the third-generation biofuels, how they are cultivated in different systems, different influencing factors, and the technologies for the conversion of biomass. The benefits provided by these new generation biofuels are also discussed. The development of algae-based biofuel would not only change environmental pollution control but also benefit producers' economic and social advancement.


Assuntos
Biocombustíveis , Microalgas , Biomassa , Fotobiorreatores , Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...